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Abstract. I discuss the renormalization-group equation governing the leading order light-cone distribution
amplitude of the B-meson φB

+(ω, µ) and its exact analytic solution. The solution displays two features
concerning the asymptotic behaviour of φB

+(ω, µ) for small and large values of ω. I comment on further
applications and argue that the loss of normalizability is not a problem in practice.

PACS. 12.38.Cy – 12.39.Hg – 12.39.St – 13.25.Hw

1 Introduction

The computation of many decay amplitudes of the B-
meson simplifies considerably in the framework of facto-
rization [1], in which amplitudes can be expressed in lea-
ding power as a convolution integral of a calculable hard-
scattering kernel and leading order light-cone distribution
amplitudes (LCDAs) of the mesons involved. Two such
amplitudes appear in the parameterization of B-meson
matrix elements of non-local operators where the non-
locality is light-like. In most applications only one of them,
called φB

+(ω, µ), contributes at leading power and can be
defined as the Fourier transform of φ̃B

+(τ, µ), where [2]

〈 0 | q̄s(z) Sn(z, 0) /n Γ h(0) |B̄(v)〉

= − iF (µ)
2

φ̃B
+(τ, µ) tr

(

/n Γ
1 + /v

2
γ5

)

. (1)

A sensitivity to this universal, non-perturbative fun-
ction arises in processes which involve hard interactions
with the soft spectator quark in the B-meson, for exam-
ple in B → πlν, B → K∗γ, etc. A generic factorizable
decay amplitude may be written as

A =
∫ ∞

0

dω

ω
T (ω, µ) φB

+(ω, µ) , (2)

where we assume that the µ dependence cancels between
the hard-scattering kernel T and the LCDA. In writing
the amplitude in this way we have achieved a first step
of scale separation, since the kernel depends on the phy-
sics associated with large energy scales, i.e. does not con-
tain large logarithms for µ ∼ mb, whereas the LCDA is a
universal, non-perturbative function which “lives” on low
scales µ ∼ ΛQCD. Since there is no one scale at which
neither of the two quantities contain large logarithms it is

crucial to resum those large (Sudakov) logarithms to gain
full control over the separation of physics at different sca-
les. We thus have to derive and solve the renormalization
group evolution for the LCDA or, equivalently, the hard-
scattering kernel [3,4]. In this (admittedly technical) talk
I present the renormalization group evolution equation of
the LCDA φB

+(ω, µ), its exact solution, and derive scaling
properties for its asymptotic behaviour.

2 Derivation of the RGE

Since different operators that share the same quantum
numbers can mix under renormalization we write the re-
lation between bare and renormalized operators as

Oren
+ (ω, µ) =

∫

dω′ Z+(ω, ω′, µ) Obare
+ (ω′) . (3)

In the case at hand the operator is, up to a Dirac
trace, the product of F (µ), which denotes asymptotic va-
lue of

√
mBfB in the heavy-quark limit, and the LCDA

φB
+(ω, µ). The analytic structure of φ̃B

+(τ, µ) implies that
φB

+(ω, µ) vanishes for negative ω. It then follows that the
Renormalization Group Equation is an integro-differential
equation in which the anomalous dimension is convoluted
with the LCDA.

d

d lnµ
φB

+(ω, µ) = −
∞∫

0

dω′ γ+(ω, ω′, µ) φB
+(ω′, µ) (4)

We may separate the on- and off-diagonal terms of the
anomalous dimension and express it as

γ+(ω, ω′, µ) =
[

Γcusp(αs) ln
µ

ω
+ γ(αs)

]

δ(ω − ω′)

+ω Γ (ω, ω′, αs) (5)
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Fig. 1. One-loop diagrams for the calculation of the anomalous
dimension of the B-meson light-cone distribution amplitude

to all orders in perturbation theory. The cusp anomalous
dimension Γcusp(αs) appears as the coefficient of the ln µ
term and has a geometric origin [5]: Since an effective
heavy-quark field h(0) can be expressed as the product of
a free field and a Wilson line Sv(0, −∞) extending from
(−∞) to 0 along the v-direction, the matrix element in
(1) contains Sn(z, 0) Sv(0, −∞) which can be combined
to form a single Wilson line with a cusp at the origin, as
shown in Fig. 2(a). The appearance of the single lnµ term
distinguishes the anomalous dimension of the B-meson
LCDA from the familiar Brodsky-Lepage kernel [6]. On
the one-loop level the lnµ term appears in the calculation
of the first diagram in Fig. 1, where the gluon from the
Wilson line Sn(z, 0) connects to the heavy-quark Wilson
line Sv(0, −∞).

We find the one-loop expressions [3] (denoted by the
superscript (1)) to be Γ

(1)
cusp = 4, γ(1) = −2, and

Γ (1)(ω, ω′) = −Γ (1)
cusp

[
θ(ω′ − ω)
ω′(ω′ − ω)

+
θ(ω − ω′)
ω(ω − ω′)

]

+
, (6)

where we have used that γ
(1)
F = −3 is the one-loop coef-

ficient of the anomalous dimension of heavy-to-light cur-
rents. The subscript + denotes the standard “plus distri-
bution” which ensures that

∫
dω′Γ (ω, ω′) = 0.

3 Keys to the exact solution

The first key toward solving the RG (4) concerns the off-
diagonal term ωΓ (ω, ω′, µ) in the anomalous dimension
(5). We observe that (omitting αs ≡ αs(µ) dependence)

∞∫

0

dω′ωΓ (ω, ω′)(ω′)a = ωaF(a) (7)

on dimensional grounds. The dimensionless function F can
only depend on the (in general complex) exponent a(µ),
which in turn must be allowed to depend on the renorma-
lization scale µ. We can therefore use a power-law ansatz

f(ω, µ, µ0, a(µ)) =
(

ω

µ0

)a(µ)

eU(a(µ),µ) (8)

with an arbitrary mass parameter µ0. The function f sol-
ves the RG (4), if the exponent a(µ) and the normalization
U(a(µ), µ) obey the differential equations

d

d lnµ
a(µ) = Γcusp(αs) , (9)

d U(a(µ), µ)
d lnµ

= −γ(αs) − F(a(µ), αs) − ln
µ

µ0
Γcusp(αs) .

The first equation can be immediately integrated and
yields a(µ) = η + g(µ, µ0) with initial value η = a(µ0)
and

g(µ, µ0) =

αs(µ)∫

αs(µ0)

dα

β(α)
Γcusp(α) . (10)

With this solution at hand, the second equation integrates
to

U(a(µ), µ) = −
αs(µ)∫

αs(µ0)

dα

β(α)

[

γ(α) + gµ(α)

+F(η + g0(α), α)
]

, (11)

where gµ(α) = g(µ, µα), g0(α) = g(µα, µ0), and µα is
defined such that αs(µα) = α. Note that g(µ0, µ0) = 0
and U(η, µ0) = 0 in this construction.

The second key to the solution concerns the initial con-
dition φB

+(ω, µ0). Defining the Fourier transform ϕ0(t) of
the LCDA at scale µ0 with respect to ln(ω/µ0) allows us
to express the ω dependence in the desired power-law form

φB
+(ω, µ0) =

1
2π

∞∫

−∞
dt ϕ0(t)

(
ω

µ0

)it

. (12)

We therefore obtain an exact analytic expression for the
solution of the RG (4) as the single integral

φB
+(ω, µ) =

1
2π

∞∫

−∞
dt ϕ0(t) f(ω, µ, µ0, η = it) . (13)

4 Asymptotic behaviour

The solution (13) enables us to extract the asymptotic
behaviour of the LCDA φB

+(ω, µ) as ω → 0 and ω → ∞
by deforming the integration contour in the complex t
plane. We hence need to study the analytic structure of
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n
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cusp
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t

Fig. 2. a Left: The cusp in the Wilson line Sn(z, 0)Sv(0, −∞).
b Right: Poles of the function f(. . . , it) in the complex t plane.
The upper pole remains stationary under renormalization flow,
whereas the position of the lower pole moves toward the real
axis for increasing µ
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the integrand ϕ0(t) f(ω, µ, µ0, it) ∼ ωit+g(µ,µ0). If ω is
very small we can deform the contour into the lower half
plane and then the position of the nearest pole to the real
axis determines the ω dependence of φB

+(ω, µ). Similarly
the nearest pole in the upper half plane dominates for very
large ω.

Let us study the analytic structure of f(ω, µ, µ0, it) at
leading order in RG-improved perturbation theory. Using
the one-loop expressions (6) and the definition (7) we find

F(1)(a) = Γ (1)
cusp [Ψ(1 + a) + Ψ(1 − a) + 2γE ] . (14)

Ψ and γE denote the logarithmic derivative of the Euler-
Gamma function and the Euler-constant, respectively.
Plugging this result into (11) with η = it one obtains
(using the short-hand notation g ≡ g(µ, µ0))

eU(it+g,µ) ∝ Γ (1 + it) Γ (1 − it − g)
Γ (1 − it) Γ (1 + it + g)

. (15)

The function f(ω, µ, µ0, it) has poles along the imaginary
axis, and the closest to the real axis are located at t = i
and t = −i(1 − g). Using the one-loop expression (10) we
observe that the function g vanishes at µ = µ0 by defi-
nition and grows monotonously as µ increases. Therefore
the position of the pole in the lower complex plane ap-
proaches the real axis under renormalization evolution, as
illustrated in Fig. 2(b).

These poles “compete” with the singularities arising
from ϕ0(t) for the nearest position to the real axis. Let us
assume that, for a given model of φB

+(ω, µ0), the LCDA
grows like ωδ for small ω and falls off like ω−ξ for large
ω. The corresponding poles of the function ϕ0(t) are then
located at t = −iδ and t = iξ. We therefore obtain the
asymptotic behaviour of the renormalized LCDA as

φB
+(ω, µ) ∼

{

ωmin(1,δ+g) ; for ω → 0,
ω− min(1,ξ)+g ; for ω → ∞.

(16)

The two immediate observations are that, regardless of
how small the value of δ is, evolution effects will drive the
small ω behaviour toward linear1 growth, and that the
renormalized LCDA at a scale µ > µ0 will fall off slower
than 1/ω irrespective of how fast it vanishes at µ = µ0.

5 Concluding remarks

The emergence of a radiative tail after (even infinitesi-
mally small) evolution seems, at first sight, a very strange
property of the LCDA, because it implies that the nor-
malization integral of φB

+(ω, µ) is UV divergent. This
can be understood as the corresponding local operator
φ̃B

+(τ = 0, µ) requires an additional subtraction when re-
normalized. However, this is not an obstacle in practical
applications in which only φB

+(ω, µ)/ω modulo logarithms
appears. An integral over this function remains UV fi-
nite as long as g(µ, µ0) < 1, at which point the pole at

1 Might this be an argument for δ = 1 in the first place?

t = −i(1 − g) reaches the real axis and the above forma-
lism breaks down.

It is evident from (16) that evolution effects mix diffe-
rent moments of the LCDA. For example, the first inverse
moment of φB

+(ω, µ) defines a parameter λB(µ),

1
λB(µ)

=

∞∫

0

dω

ω
φB

+(ω, µ) , (17)

which is connected to a fractional inverse moment of
order 1 − g(µ, µ′) at a different scale µ′. This makes it
impossible to calculate the scale dependence of λB(µ) in
perturbation theory without knowledge of the LCDA.

In this talk I presented the renormalization-group
equation of the B-meson LCDA and discussed the key
steps in solving this integro-differential equation analyti-
cally. Since the amplitude (2) is independent of the renor-
malization scale µ, the technique presented here can be
used to resum Sudakov logarithms in the hard scattering
kernel T (ω, µ), which was demonstrated in reference [4]
for the B → γlν decay mode.

Let me stress that the solution outlined here can also
be used in other applications in B-physics, such as the
the inclusive B → Xsγ for example, in which the shape-
function and the hard-scattering kernel relevant to the
analysis of the photon spectrum [7,8] obey evolution equa-
tions similar to (4).
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